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Trapping of random walks on small-world networks

F. Jasch and A. Blumen*
Theoretische Polymerphysik, Universita¨t Freiburg, D-79104 Freiburg Im Breisgau, Germany

~Received 21 May 2001; published 13 November 2001!

We investigate the trapping of random walkers on small-world networks~SWN’s!, irregular graphs. We
derive bounds for the survival probabilityFn

SWN and display its analysis through cumulant expansions. Com-
puter simulations are performed for large SWNs. We show that in the limit of infinite sizes, trapping on SWNs
is equivalent to trapping on a certain class of random trees, which are grown during the random walk.
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I. INTRODUCTION

The trapping of random walkers by randomly distribut
sinks is a rich problem that has been widely investigated
the last two decades@1–13#. Besides its intrinsic mathemat
cal interest as an example of rare events statistics@1#, the
trapping problem is a central model for energy transfer a
carrier recombination in ordered and disordered mater
@4,5#. Trapping has been investigated using very differ
techniques, ranging from rigorous mathematical treatme
@1# and field theory@6,7# to extensive simulations@3,4,9#.
While the short- and medium-time decay are well rep
duced by Smoluchowski-type approaches@3# and lead to ex-
ponential decays on regularD-dimensional lattices withD
.2, at very long times, surprisingly, the decay lawFn is
expected to tend towards@1,4–11#

Fn;exp@2cnD/~D12!#, ~1!

whereFn is the probability that a random walker is still no
trapped,c is a constant, andn is the number of steps. Eve
more complex aspects are revealed when monitoringFn on
structures such as fractals@11#, Cayley trees@12#, and ultra-
metric spaces~UMS! @13#, which mimic disorder. When let
ting the trapping rates on the one-dimensional~1D! lattice be
strongly correlated with the hopping probabilities@8# the
asymptotic behavior Eq.~1! is changed by logarithmic cor
rections.

In this paper, we study the trapping problem on a parti
larly interesting class of random graphs, namely, on sm
world networks~SWN’s!. Recently these structures have a
tracted much interest@14–20#. Thus, SWN’s may be
constructed by inserting in a random way additional lin
~AL ! into a regular lattice. Examples for realizations
SWN’s range from the net of social acquaintances to co
puter clusters@14#.

We proceed with displaying the general properties
SWN’s in Sec. II. In Sec. III we study trapping on SWN
and derive analytical results, which allow us to obtain
qualitative understanding of the problem. In Sec. IV w
present the results of our computer simulations and con
these with the insights gained in Sec. III. We end with o
conclusions in Sec. V.
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1063-651X/2001/64~6!/066104~6!/$20.00 64 0661
n

d
ls
t
ts

-

-
l-
-

-

f

st
r

II. THE SMALL-WORLD NETWORK

To envisage the construction of the SWN’s conside
here, we start from a ring withL sites,i 51,...,L, where each
site i is connected by bonds to its two nearest neighbori
21, i 11. Then we add with probabilityp from each lattice
site i a bond~AL ! to one of the other sitesk, chosen ran-
domly, with equal probability. In this way, we add on th
averagepL, additional AL to the ring. The parameterp mea-
sures the degree of disorder of the SWN, since it interpola
between a ring forp50 and a nearly completely random
graph forp large, sayp51. The probability 2rp/(L21) of
drawing an AL between the lattice pointsi, k whose mutual
distance is less than a preassigned lengthr, i.e., u i 2ku<r ,
tends to zero in the limitL→` and the same is true for loop
of bounded length. This implies that in the limit of largeL, a
SWN can hardly be distinguished from a treelike structu
in as far as the local properties are concerned. This is v
similar to the case of purely random lattices~where the
weight of clusters with closed loops vanishes forL→`
@21,22#!, and we will make use of this fact later, when co
sidering theL→` limit of Fn

SWN, the decay due to trapping
on very large SWN’s.

From the construction described above, it follows that
probabilitywk for a lattice pointi to havek AL attached to it
amounts to

wk5pS L21
k21 D S 12

p

L21D L2k22S p

L21D k21

1~12p!

3S L21
k D S 12

p

L21D L212kS p

L21D k

. ~2!

The first term in Eq.~2! stems from having ati one outgoing
and k21 incoming AL, while the second term is due t
having zero outgoing andk incoming AL @an outgoing AL
has probabilityp, an incoming AL probabilityp/(L21)#.

In the limit L→`, this distribution turns into a weighted
sum of two Poisson distributions

wk5p
pk21

~k21!!
e2p1~12p!

pk

k!
e2p. ~3!
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From Eq.~3!, it follows that each lattice point has a mea
number^k&52p of AL’s and that the varianceA^k2&2^k&2

of the connectivity distribution is given byAp(22p).

III. TRAPPING ON SWN

Given a particular SWN realization, we now consider
particular trap distribution over it; each site can, with pro
ability q, be occupied by an immobile trap. In this way, th
disorder is quenched. Random walkers are then placed o
SWN at the 0th step (n50) and are trapped~annihilated! at
the first encounter of a trap. We focus on the probabi
Fn

SWN that the walker has survived~is not yet trapped! at the
nth step, averaged over all SWN realizations, over all p
sible placements of the traps and over all random-walk~RW!
realizations.

Denoting byRn the number of distinct sites visited inn
steps, the walker survivesn steps, if none of theRn visited
sites is a trap. This event has the probability@3#

Pn5~12q!Rn21, ~4!

taking into account only walkers that start from trap-fr
sites. Thus, we obtain the exact survival probability by p
forming the average over all RW and SWN realizations

Fn
SWN5^~12q!Rn&5 (

R51

`

pn
SWN~R!~12q!R21, ~5!

wherepn
SWN(R) is the probability that an step RW has vis-

ited exactlyR distinct sites on latticesdevoidof traps.
Since for SWN theRn values are not smaller than for th

underlying 1D chain and since (12q)Rn21 is a monotoni-
cally decaying function ofR, we obtain the inequality

Fn
1>Fn

SWN, ~6!

whereFn
1 is the survival probability on a regular lattice.

On the other hand, we obtain a lower bound by plac
additional traps on each lattice site, to which at least one
is connected. In this way, the AL’s are completely screen
by the traps and we are led to the trapping problem on a
chain with a different trap densityq̃. From Eq.~3!, the prob-
ability of having a trap-free site is given byw0(12q);
hence, the trap densityq̃ equals

q̃512w0~12q!512e2p~12p!~12q!. ~7!

Thus, we have the inequality

Fn
SWN~q!>Fn

1~ q̃!. ~8!

We stop to note that Eq.~8! makes sense only forp,1;
otherwise, our construction of the lower bound assigns
each lattice site a trap, which rendersFn

1(q̃) identically zero.
We infer that Fn

SWN is bounded from above and from
below by the decay forms of trapping in 1D calculated foq
and for q̃. As we will show in the next section, the relation
Eqs.~6! and~8! are well fulfilled. Furthermore, we infer tha
given the asymptotic 1D behavior, which leads to the ex
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nentD/(D12)51/3 in Eq.~1!, as analytically established in
@2#, Fn

SWN behaves in the same way.
The key feature that leads to this fact is that SWN’s d

play extended chain-like portions. Of course, the general
derstanding is that most experiments are not able to reach
asymptotic limit@9,10#

Insertingg52 ln(12q) into Eq.~5! leads to the following
expansion@3#:

Fn
SWN5^exp~2gRn!&5expF (

j 51

`

k j ,n
SWN~2g! j / j ! G , ~9!

wherek j ,n
SWN are the cumulants of the distribution ofRn on

SWN latticesdevoidof traps. For instance, the first two cu
mulants are

k1,n
SWN5^Rn&[Sn

SWN and k2,n
SWN5^Rn

2&2^Rn&
2[~sn

SWN!2,

~10!

with Sn
SWN and (sn

SWN)2 being the mean and the variance
Rn . Taking only the first term in the sum of Eq.~9! into
account is known as the Rosenstock approximation~RA!; as
in Ref. @3#, we denote the approximations that are obtain
by restricting the sum in Eq.~9! to the first N terms by
FN,n

SWN. According to the Jensen-Peierls inequalityF1,n
SWN

<Fn
SWN @23#, i.e., RA is a lower bound to the true decay. W

remark that RA leads to very good expressions for the ta
problem@17,24,25#; it is also very good in high-dimensiona
spaces and for smallg, for short and medium times. On th
other hand RA is poor in low dimensions@3# and, of course,
it does not lead to the asymptotic behavior of Eq.~1!.

As a first approximation step for trapping on SWN, w
first focus onF1,n

SWN5exp(2gSn
SWN), and hence, onSn

SWN.
As shown in Ref.@17#, Sn

SWN is closely described by the
following scaling relation:

Sn
SWN5n1/2f ~np2!, where f ~x!

5HA8/p, for x→0

c8Ax,c8 constant, for x→`
. ~11!

We stop to note that the form off (x) may be specified in
more detail, by considering that for smallp, p!1, a random
walker moves mostly on the 1D structure. Now, each ti
the random walker makes a step along an AL, it starts
explore a 1D segment, for whichSn is given ~for n not too
small! by Sn.A8n/p. Therefore, a walker that inn steps
makesAn steps along AL’s, visitsAn11 different segments
~if we neglect returns over the AL’s!, of average length
n/(An11) each; on each segment on the avera
A8n/p(An11) sites are visited, hence,

Sn
SWN5~An11!A 8n

p~An11!
5A8n

p
~An11!1/2.

~12!

On the other hand, the probability that a step leads to cro
ing an AL instead of continuing over the segment is roug
4-2
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2p/3, so that An5Sn
SWN2p/3. Thus, Sn

SWN

5A8n/p(Sn
SWN2p/311), and solving this equation fo

Sn
SWN leads to

f ~x!5
8

p SAx

9
1Ax

9
1

p

8 D . ~13!

This result is confirmed by our numerical investigations, s
Fig. 1, the details of which are presented in the next sect

IV. SIMULATION RESULTS

In our numerical calculations, we start from Eq.~5!, since
it offers the great advantage of being, in fact,
q-independent procedure: as stressed in@3#, q appears only
throughg, a parameter. Numerically, one has only to eva
ate theRn distribution on latticesdevoidof traps.

We start our procedure as follows: For a givenq, we
construct ten different SWN’s of sizeL593105 each. On
these, we simulate a total of 105RW’s with randomly chosen
starting points, and determine theRn values for each walk.
By choosing the starting points randomly we sample, in fa
a very large class of local SWN geometries, much larger t
the ten SWN realizations would indicate at first glance. T
so determinedRn allow us then to computeSn , see Fig. 1
and also via Eq.~5!, to evaluate numerically for differentq
values bothFn

SWN, and also the correspondingFN,n
SWN. The

results of these calculations are presented in Figs. 2~a! and
2~b!. To emphasize the regions of stretched exponential
cay

Fn
WMN;exp~2cna!, ~14!

and to be able to highlight the exponenta, we plotted
log10(2 ln Fn

SWN) versus log10n; then the exponenta is
given directly by the slope of the curves.

As we proceed to discuss, we obtain~depending on the
values ofp, q, andn! different regimes that follow Eq.~14!.
We start by considering the range of small and medium la

FIG. 1. The scaling functionf (x) Eq. ~13!, plotted as a solid
line, compared withSn

SWN/An, displayed as a function ofx5np2

through dashed lines. Here,p50.001, 0.002, 0.005, and 0.01 from
left to right.
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n, a region of much experimental interest. If the ter
l2(sn

SWN)2/2 in Eq. ~9! is small, we expect the RA

Fn
SWN.F1,n

SWN5exp~2gSn
SWN! ~15!

to hold very well @remember that for smallq, one hasg
52 ln(12q).q#; furthermore, if (sn

SWN)2;n, this approxi-
mation becomes exact in the limitn!q22. Then the value of
a is determined in this range by the behavior ofSn

SWN, which
has two different regimes, see also@17#: For n!p22, Eq.
~13! implies Sn

SWN;An, which leads toa51/2, while forn
@p22, one hasSn

SWN;n leading toa51. On the other hand
for n→`, we recalled in the Introduction thatFn

1 obeys Eq.
~14!, with a51/3, see Eq.~1!. Furthermore, we showed in
Sec. II ~using upper and lower bounds forFn

SWN based on
Fn

1! that forn→` Fn
SWN also obeys Eq.~14! with a51/3. In

Figs. 2~a! and 2~b!, we show the numerically determine
Fn

SWN. The scales chosen in Figs. 2~a! and 2~b! ~see caption!
allow us to monitor the change in the exponenta of Eq. ~14!.
As is evident from the figures, forp!1, theFn

SWN display a
turning point forq.p ~say, forp50.04 andq50.05!, which
we associate with a transition froma.1/2 toa.1. In Figs.
2~a! and 2~b! we also compareFn

SWN with F1,n
SWN and with

F2,n
SWN. It turns out that for small values ofq, the RA holds

well as far asn5104. Interestingly, the RA gets better fo

FIG. 2. ~a! Survival probabilitiesFn
SWN given as full lines, as a

function of n, the number of steps forp50.04. We display the
dimensionless quantities log10(2 ln Fn

SWN) versus log10 n for the
trap densitiesq50.5, 0.2, 0.1, 0.05, 0.02, and 0.01 from above
below. In addition, the first and second cumulant approximatio
Eqs.~9! and~10! are shown as dashed and dotted lines, respectiv
~b!. Same as~a! for p50.08.
4-3
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F. JASCH AND A. BLUMEN PHYSICAL REVIEW E64 066104
larger values ofp. This shows that for largerp, SWN’s be-
have more and more like higher-dimensional lattices; a
reminder, on regularD-dimensional lattices, the RA, Eq
~15!, gets better with higherD @3#.

Including the second cumulants improves the quality
the approximation ofFn

SWN in the short and medium ste
ranges. On regular lattices, we found that theFN,n

SWN approxi-
mate in turn from above and from below, depending
whetherN was even or odd@3#; this, however, does not see
to hold for FN,n

SWN.
To investigate this, we plotted in Fig. 3,DN

5uln(FN,n
SWN/Fn

SWN)u for N51, 2, 3, and 4. We see that fo
smalln, the approximations are getting better with increas
N, but this is not true any more for larger values ofn; evi-
dently, there is a crossover towards a regime where the lo
time behavior of Eq.~1! begins to be felt.

In Figs. 4~a! and 4~b! we compareFn
SWN with the lower

bound Eq.~8! and the upper bound Eq.~6! the latter being
given by the survival probabilityFn

1 on a regular chain.
Now, Fn

SWN equalsFn
1 for n of the order unity, since the

influence of AL’s may be neglected at the first steps. On
other hand, forp!1 the lower bound Eq.~8! gets to approxi-
mateFn

SWN very well in the limit of largen; the quality of
the approximation increases with increasing trap densityq.
For intermediate step numbers, the trueFn

SWN decay lies be-
tween the two bounds. If the trap densityq is large, walks
over many AL’s are of low probability; in this case, the upp
and lower bounds get to be very near, so thatFn

SWN re-
semblesFn

1 closely.
We stop to note that as long asn!L one has, evidently

that all Rn!L. Now, Fn probes mainly the smallR wing of
theRn distributionpn(R). Under these conditions, we expe
that Fn does not distinguish between a SWN and a relat
treelike structure. To demonstrate this, we perform simu
tions on random trees. We obtain these by opening branc
In Fig. 5, we show a small region containing several AL’s
exemplify the fact that on SWN’s the local structure is d
termined by branching. We hence grow the trees correspo
ing to a given SWN class by allowing each site to sprout n
branches, with probabilities that follow from the distributio
given by Eq.~3!. The absence of closed loops simplifies t
simulations, since we do not have to determine a partic

FIG. 3. The functionDN5u ln(FN,n
SWN/Fn

SWN)u for N51, 2, 3,
and 4, shown forp50.08 andq50.05.
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realization of the SWN before we start performing the ra
dom walks to determineRn . Instead, we let the tree grow
during the random walk process, and we view the rand
walker as an ‘‘activator:’’ It diffuses on the already grow
part of the tree, until making a step on a bond to the peri
ery, by which it triggers the addition of a new site; to th
site, we assign one additional regular bond~solid line in Fig.
5! and~with probabilitywk! k AL’s ~dashed lines! if the new
site is reached via a regular bond, or two additional regu

FIG. 4. ~a! Data of Fig. 2~a! in the same scales, compared to t
upper boundFn

1 Eq. ~6! ~dotted lines!, and to the lower-bound Eq
~8! ~dashed lines!. Here, p50.04 and the trap densities areq
50.5, 0.2, 0.1, and 0.05 from above to below.~b!. Same as~a! for
the data of Fig. 2~b! andp50.08.

FIG. 5. The local tree structure of the SWN in the limitL
→`. The full lines indicate segments belonging to the original 1
chain and the dashed lines denote additional links AL. The cir
gives the boundary of the local volumeV. The segments are con
nected through loops, which, however extend far outsideV.
4-4
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TRAPPING OF RANDOM WALKS ON SMALL-WORLD NETWORKS PHYSICAL REVIEW E64 066104
bonds andk21 AL’s ~with probabilitywk /(12w0),kÞ0! if
the new site is reached via an AL. In this way, the desi
numberRn of distinct visited sites in each realization is not
ing else but the number of sites of the already grown tre

In Fig. 6, we compare the numerical data forFn
tree ob-

tained from 33106 growing processes with theFn
SWN ob-

tained for the simulations of Figs. 2~a! and 2~b!. The agree-
ment is very good, as can be readily checked by inspect

We close this section with some remarks on the precis
of our numerical approach. We calculatedFn from Eq. ~5!
with the help of thepn(R) distribution, which does not de
pend on the traps’ placement. Determiningpn(R) is in prin-
ciple exact, because it involves only an enumeration. Th
for example, on a 1D chain of size 2N,pn(R) does not de-
pend on the system’s size, as far asn,N. This should be
contrasted to direct simulations ofFn , performed on lattices
with fixed trap distributions: There, one finds@10# a cross-
over timet3 from a stretched exponential to an exponen

FIG. 6. The survival probabilityFn
tree for trapping on trees

grown as discussed in Sec. IV, compared to theFn
SWN obtained on

SWN’s of sizeL593105 ~solid lines! for p50.04. The trap den-
sitiesq are the same~but in reverse order! as in Fig. 2~a!.
ev

.

06610
d
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decay, andt3 depends logarithmically on the system’s si
N. This logarithmic dependence makes it impossible to
the asymptotic behavior ofFn , since it is hidden by the
exponential decay of the finite lattice@10#. A proof that these
two procedures to determineFn differ is provided by our
Figs. 2~a! and 2~b! where~distinct from Ref.@10#! no cross-
over to an exponential decay appears. In our case, the m
limitation is that we cannot determine the fullpn(R) distri-
bution, but only a sample of it; we may miss some very ra
events.

V. CONCLUSIONS

In this paper, we have studied the trapping problem
SWN’s. We derived bounds for the survival probabili
Fn

SWN of walkers over SWN’s with traps. We studied seve
approximations forFn

SWN, and focused particularly on th
Rosenstock approximation and on upper and lower boun
These bounds are such thatFn

SWN;Fn
1 which lets us expect

that asymptotically alsoFn
SWN;exp(2cn1/3) holds. The re-

lation Fn
SWN;Fn

1 results from the existence of large 1D-lik
regions on SWN with lowp. We verified these results b
numerical simulations on SWN’s of finite but large sizeL. In
addition, we also investigated an approach to the trapp
problem forL→`. In this limit, short closed loops of the
SWN’s ~of less than a preassigned length! have a vanishing
probability; this renders the SWN’s behavior~in what local
quantities are concerned! equivalent to that of a certain kind
of random trees. We demonstrated the correctness of
idea by performing simulations over such trees and comp
ing the obtainedFn

tree with the Fn
SWN found for SWN’s. On

such random trees, the simulations are simpler than
SWN’s and the numberRn of distinct sites visited inn steps
is given by the number of sites of the random tree gro
during the walk.
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